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Abstract

A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new

device has concentric metal electrodes which exhibit a high degree of symmetry and a design

flexibility absent in the conventional MSM device. The concentric electrodes are biased

to alternating potentials as in the conventional interdigitated device. Because of the high

symmetry configuration, however, the new device also has a lower effective capacitance.

This device and the conventional MSM structure are analyzed within a common theoretical

framework which allows for the comparison of the important performance characteristics.



1. Introduction

Metal-semiconductor-metal (MSM) photodetectors have a potentially important role to play

in optoelectronic device integration because of several distinct advantages. Of all the semi-

conductor photodetectors that have been studied, these devices are the simplest to fabricate.

Furthermore, their fabrication technology is fully compatible with that of FETs. This coinci-

dence makes the MSM photodetector an ideal device for optoelectronic integration. Another

major advantage of these devices is their superior performance at high frequencies. The

desirable high frequency characteristics are partly a consequence of the inherently low ca-

pacitances exhibited by the devices. In general, they have lower capacitances per unit area

than any of the doped-junction devices. Because of their planar structure, the intrinsic

response times of most MSM devices are often limited primarily by the transit time be-

tween electrodes. GaAs MSM devices with performance bandwidths in excess of 400 GHz,

and Silicon-based devices with bandwidths of up to 30 GHz have been reported [1]. These

figures far exceed those reported for any other photodetector structure, including PIN pho-

todiodes. It is also predicted theoretically that devices with bandwidths above 1 THz are

possible, albeit with sub-micron feature sizes [2].

1.1. Motivation for Concentric Electrode MSM Photodetectors

Current MSM photodetectors are fabricated with the interdigitated electrode structure

shown in Fig. 1. Electronic carriers photogenerated between the electrode gaps are trans-

ported to the electrodes primarily by drift along the strong electric field lines established by

the bias voltage, thus leading to a signal current. The planar geometry of the MSM device

endows it with distinct advantages as a photodetector. In the ideal analysis of a device

such as this, one generally assumes that the electrodes extend to infinity in each direction.
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Under this assumption, a two-dimensionalanalysiscan be employedto calculate the the-

oretical performancelimits of the device [3]. Real devices,however,haveelectrodeswith

finite lengths. One consequenceof this is non-idealitieswhich degradethe performanceof

the practical devices. In particular, the sharp cornersassociatedwith the abrupt termina-

tion of the electrodefingersand the additional ohmic metallization required for biasing the

electrodescause"crowding" of the electric field lines near the endsof the electrodes.This

situation can lead to higher electric field strengths in these regionsthan what is predicted

by the simple two-dimensionalconsideration. The concomitant disadvantagesof the high

electric fields area reducedbreakdownvoltageand higher capacitance.

We are proposing a way of minimizing theseeffectsby changing the geometry of the

device. The proposednew device structure hasconcentric electrodeswhich are biased to

alternating potentials as in the conventionalinterdigitated electrodestructure. A schematic

representationof the new device is shownin Fig. 2. In this configuration, the non-ideal

"crowding" of electric field lines associatedwith the abrupt termination of the electrodes

in the interdigitated electrodedevice structure is minimized. It is anticipated that this

devicewill exhibit superiorperformancecharacteristicscomparedto thoseof the rectangular

interdigitated device.We are in the processof fabricating suchdevicesand the experimental

results will be reported elsewhere.

The new MSM photodetectoraffordsonean additional degreeof designfreedomabsent

in the conventionaldetectors. This designfreedomis representedby the central disk shown

in Fig. 2. This disk is alsothere becauseof a necessity;if it wereabsent,carriersgenerated

in this region would encounterweakelectric fields and would be transported to the nearest

electrodeprimarily by diffusion. This would lead to a degradationof the temporal response

of the device.

Beforecontinuing, we establishin Fig. 3 the nomenclatureto be usedin the rest of the
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paper. The parameter a denotes an electrode width in both the conventional interdigitated

and concentric electrode devices; b is the electrode period in either geometry. In Fig. 3, Rc

is the radius of the central disk. The number of annular electrodes is to be represented by

N,. The total number of electrodes, including the central disk, is therefore N, + 1.

2. Methods of Analysis

2.1. General Considerations

Our primary goal in this Section is to establish a framework within which we can analyze

both the new concentric electrode device and the conventional interdigitated electrode device.

This will enable us to compare the operating characteristics of the devices. In formulating the

analysis, we have striven to use methods which are as simple as possible without compromis-

ing the accuracy of the results. Rigorous analyses with sophisticated numerical techniques

are possible, but such techniques are often computationally complex and extremely time

consuming. In some cases they may even obscure the basic physical premise of the analysis.

In order to ensure that our simple models faithfully describe the physical devices, we have

also used the numerical solutions of the general, fully coupled drift-diffusion equations for

semiconductors to verify the models. We find that our model calculations agree reasonably

well with the solutions obtained from the drift-diffusion equations in all cases. Thus, our

models are valid to the extent that the drift-diffusion equations adequately describe the

physical reality of these devices. In these calculations, we have chosen not to consider hot-

electron effects or devices with feature sizes less than 0.5 /_m. Such cases are, of course,

important, but this is a topic for future studies. Stated below, for the sake of completeness,

are the semiconductor drift-diffusion equations appropriate for our analysis. These equations

are:
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1 VO_ = G_ - R_ + . J_ (1)
Ot q

0__p= ap - Rp - _-V. Sp (2)
Ot q

V2_ = -q(p - n + N + - g A) (3)

J, = q(ng=V_ + D=Vn) (4)

Jp = q(p#pV_- DpVp), (5)

where n and p are the electron and hole concentrations, #_ and/_p are the field dependent

mobilities for electrons and holes, D. and Dp are the diffusivities of electrons and holes, N +

and N_ are the ionized donor and acceptor concentrations, Jn and Jp are the electron and

hole current densities, e is the dielectric constant for the active semiconductor, and qo is the

electrostatic potential. G,,, Gp , P_, and /_ are the generation and recombination rates

for electrons and holes, including optical and thermal generation and Shockley-Read-Hall

recombination. The effects of charge traps are considered to be negligible. The numerical

solutions to these equations are used to check the accuracy of our models.

2.2. Discussion of the Model Assumptions

In considering the MSM photodetectors in both geometries, a number of simplifying assump-

tions can be made. First, the active semiconductor layer is assumed to be infinitely thick

and uniformly doped. The infinite thickness assumption can be justified on the basis of

the absorption depth of the radiation. The issue of the doping uniformity can generally be

guaranteed by fabricating the device from material grown by any of the advanced modern

crystal growth techniques. The second main assumption is that the devices are operated at

a bias point where the semiconductor is fully depleted between the electrodes. The results
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reported here are valid only for bias voltagessatisfying this condition. In any event, most

real MSM devicesareoperatedunder this condition if they are intended to function aseffi-

cient photodetectors. If an MSM deviceis not biasedto full depletion,the photogenerated

carriers are not likely to be fully collected; the carrier transit time and consequentlythe

external optical responsewill thereforebe compromised.

In the calculation of the darkcurrent, it is assumedthat the electrodesform idealSchottky

contacts. Furthermore, the effectof image-forcelowering of the Schottky barrier height is

neglected; this assumption is verified by the full drift-diffusion simulations. Thermionic

emissiontheory hasalso beentaken into accountin the determination of the dark current

density at the Schottky barriers. This is consistentwith the moderatedoping levels found

in typical MSM photodetectors[4].

If the MSM device is taken to consistof ideal electrodeson top of a perfect dielectric

material, then the depletion capacitanceassociatedwith the activesemiconductorlayer can

be neglected. This is true for low doping densitiesand for the typical electrode spacing

of most MSM photodetectorsand is consistentwith other analysesof thesedevicesin the

past[3]. Experimental resultshaveshownthat theseassumptionsare fairly reasonable[5].

In the photocurrent considerations,it will be assumedthat all the incident photons not

reflectedat the surfaceof the device,areabsorbedin the depletionregionformedaround the

electrodes. Since the electric field strengths in these regionsare generally large, it follows

that the generatedelectron-holepairs are separatedimmediately, and it can be assumed

that recombination is negligible. This is generallytrue becausethe condition pn _<: n_(T) is

satisfied in this region.

It is implicit in this discussion that ballistic and velocity overshoot effects are not im-

portant; the carriers are assumed to travel with their equilibrium saturated velocity values.

This assumption imposes a lower limit to the feature size which can be accurately modeled
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within this framework. As stated earlier, we have only considered feature sizes of 0.5 _urn

and larger.

2.3. Resulting Equations and Methods of Solution

2.3.1. Dark Current

Our development of the dark current relations for both interdigitated and concentric electrode

MSM photodetectors will parallel the discussion given by Sze et al. for BARITT type devices

[6] made by sandwiching a slice of semiconductor material between two metal electrodes.

In this work, however, the dark current relation will be derived as a piecewise continuous

function over three regions--exclusive of avalanche breakdown, which we do not consider.

The boundaries between these regions are characterized by two bias points. The first is

the so-called reach-through voltage, denoted by VnT, which is the bias voltage at which the

depletion regions associated with each electrode first touch and the inter-electrode gaps are

considered fully depleted. The second point is the flat-band voltage, VFs, which occurs when

the slope of the energy bands at the positively biased electrode becomes zero.

The model presented by Sze was developed for one-dimensional, rather than planar MSM

devices. To a first order approximation, the behavior of the planar devices can also be

analyzed within the one-dimensional framework as long as the dark current flows along a

path which is nearly parallel to the plane of the electrodes over much of the device. As can

be seen from Fig. 4, which shows dark current vectors generated from a numerical solution

of the complete drift-diffusion equations, the current initially flows out of the electrodes in

a direction normal to the device surface, but then quickly "bends" to follow a path which

is nearly parallel to the plane of the electrodes. This is as it should be because the carriers

which constitute the dark current follow the electric field lines, which are nearly parallel to



the plane of the electrodes.

The detailed analysis of our devices, however, can in some instances differ from Sze's in

that for the planar MSM devices, surface recombination may play a part in determining the

dark current; this is not a factor in the one-dimensional structures. In the discussion here,

however, we shall limit ourselves to the cases where surface recombination is negligible. It

should be noted that whereas it is possible in the one-dimensional case to derive simple closed-

form expressions for the reach-through and the flat-band voltages, in the planar geometry

devices, it is a non-trivial task to determine such expressions. These points can, however,

be determined by examining the solutions obtained from drift-diffusion simulations. The

considerations which lead to the model equations are discussed below.

In accounting for the dark current, we will consider contributions from both carrier types.

As an example, we will consider an n-type semiconductor in which electrons are the majority

carriers and holes the minority carriers. A similar analysis with holes as the majority carriers

(for p-type material) can be easily performed. For the majority carrier dark current, we shall

model a pair of electrodes as two back-to-back Schottky diodes and relate the dark current

generated in such a structure by the equations

Inx = J_,_Aa [exp(V_/V_) - 1] (6)

and

1,,2 = Js,_A2 [1 - exp(-V2/Vt)]. (7)

The currents Ina and I,_2 are the electron dark currents from electrode 1 and 2. The subscript

1 refers to the positively biased electrode while 2 refers to the negatively biased one. The

total bias voltage which is dropped across the two electrodes that form the Schottky diodes

is

¼ = ¼ + ½. (8)
7



The positive and negative electrode areas are given, respectively, by A1 and A2. The

thermionic emission current density for electrons from the Schottky electrodes is given by

•18,, = A*_T2 exp(-¢n/Vt), (9)

where A_, is the effective Richardson constant for electrons and ¢n is the Schottky barrier

height for electrons; T is the temperature and Vt = kT/q is the usual thermal voltage. A

continuity condition for the dark current from each electrode requires that

Inx = I_2. (10)

For bias voltages less than the reach-through voltage, VRT, one can solve for the majority

carrier dark current as a function of the bias. It is a straight-forward exercise in algebra to

show from Eqns. (6) through (10) that the majority carrier dark current is given by

[ 1-exp(-¼/VO ]In = Jsn¢42 lq:__)J' (11)

for

0 _<¼ < VBR. (12)

This expression has been generalized to the multiple electrode pair case. The total area of the

reverse-biased electrodes is denoted by .A2, and a = .A_/.A1 where .2,1 is the corresponding

total area of the forward-biased electrodes. Note that the dark current approaches zero as

the bias voltage is reduced to zero and it saturates at the value of

1_ = J_nA2 (13)

for values of Vb larger than Vt and for Vb less than the breakdown voltage.

The determination of the minority carrier dark current is fairly lengthy and involved.

This current must be evaluated for three different ranges of operating voltages; these are: (i)
8



voltageslessthan the reach-throughvoltage, VRT, (ii) voltages between the reach-through

voltage and the flat-band voltage, and (iii) voltages greater than the flat-band voltage but

less than the breakdown voltage. For bias voltages less than the reach-through voltage,

regions depleted of majority carriers form around each electrode. These regions do not

merge. Between the electrodes, in the undepleted regions, the minority carrier dark current

must flow by diffusion. The net terminal hole current is therefore the total injected hole

current at the the forward-biased electrode minus the hole current lost to recombination in

the undepleted regions between the electrodes.

To quantitatively determine the net hole dark current re_tuires the solution of the diffusion

equation with the appropriate boundary conditions for the rather complicated geometries

presented here. Rather than pursuing this method of solution, we will determine the upper

bound of the magnitude of the hole dark current and compare it to the electron dark current.

If it is comparable to or larger than the electron dark current, then a full solution of the

diffusion equation would be necessary and justified.

At the forward-biased electrode, the thermionically emitted hole current is given by

Ip, = A;.A1T2exp ( kT ] (exp(V_/Vt)- 1), (14)

where A_ is the effective Richardson constant associated with thermionic emission of holes,

Cp is the Schottky barrier height for holes, and Cd is the diffusion potential given by

Cd = Cn -qVtln(Nc/go), (15)

where Nc is the conduction band density of states and ND is the background carrier concen-

tration. Note that the sum of the Schottky barrier height for electrons and holes is equal to

the band gap of the semiconductor. In the limit of large bias voltages (Vb >> Vt), the upper

bound on the hole dark current becomes

1,1 <_ ApA1T exp(-Eg/kT) Nc
9 '



where Eg is the energy gap of the semiconductor. Any hole recombination in the device

would reduce this current further. When Eqns. (11) and (16) are evaluated numerically

for typical GaAs material parameters, it is found that the hole current is many orders of

magnitude smaller than the electron current. Under these circumstances, one is justified

in neglecting the hole current and in assuming that the device dark current is primarily

dominated by the majority carrier dark current for bias voltages less than the reach-through

voltage.

For bias voltages greater than the reach-through voltage but less than the flat-band

voltage, one can use one-dimensional analysis to obtain an approximate solution to Poisson's

equation in the fully depleted region between the electrodes. One can determine from this

analysis the extent to which the energy bands bend and the reduction of the effective barrier

height from its maximum value of tp + td. Since there is no recombination in the fully

depleted device, the dark current due to holes will simply be the thermionically emitted hole

current at the forward-biased electrode where the effective barrier height has been reduced

and can be determined approximately by a solution of the Poisson equation. The resulting

hole dark current is given by

Ipl = A;A1T2exp(-fp/V,) exp \ 4VFBVt ]J (17)

for bias voltages between the reach-through and flat-band voltages. This expression is iden-

tical to one derived by Sze et al. [6]. Finally, when the flat-band voltage is reached, the

effective barrier height is reduced to the Schottky barrier for holes (¢p) and the dark current

due to the holes is simply

Ipl = J, pA1, (18)

for

VFS < Vb _<VSR (19)
10



where VBn is the breakdown voltage and Jsp is given by

Jsp = A;T 2 exp(-¢p/Vt). (20)

The total dark current is obtained by adding the contributions from the electron and

hole currents in the various regions of the bias voltage. Observe that the total dark current

saturates for Vb > VRT.

As mentioned previously, one minor limitation of the method discussed here for calcu-

lating the dark current is that the two break points in the model, the reach-through and

flat-band voltage points, cannot be easily determined in closed-form. These points can,

however, be evaluated numerically and then used in the model. In comparing detector per-

formance limits, it is usually not necessary to know exactly where the break points are. For

the efficient operation of an MSM as a fast photodetector, the device will almost always

be operated at a sufficiently large bias point that it is fully depleted and the carriers move

at their saturated velocities. The bias point is then, by definition, somewhere above the

reach-through voltage and usually well above the flat-band voltage. The figures-of-merit for

various device geometries are therefore best evaluated when the devices are operated in this

mode.

A rather interesting observation worth pointing out here is that the dark current expres-

sions depend on the total electrode areas of both polarities. In the conventional interdigitated

geometry, the areas of opposite polarity are equal. In the concentric electrode geometry,

however, they are not. If the areas of the annular electrodes of one polarity are added and

compared with the total area for the other polarity, the two values are not the same. Thus,

in the concentric electrode devices, one has an extra degree of freedom in minimizing the

dark current. This can be done by choosing the electrode polarities such that the set of

electrodes with the smaller total area multiply the dominant contributor to the dark current

density. This will result in a smaller dark cur_nt. This judicious choice of electrode polarity



is not possible in the conventional interdigitated electrodedevices. To choosethe correct

bias voltage polarity, one notes from Eqn. (11) that the majority carrier current (electrons

in this case)varies asthe area of the reversebiasedelectrode. The maximum valueof the

minority carrier current, on the other hand, ascanbe seenfrom Eqn. (18), varieswith the

area of the forward biasedelectrodes. This current reachesits saturation value only after

the device bias voltagehas reachedthe fiat-band voltage (or higher).

As can be seenfrom Fig. 5, the dark current-voltagecharacteristic computedfrom the

model developedhere is in close agreementwith that calculated using numerical methods

with the full drift-diffusion equations. The only notable discrepancybetweenthe two char-

acteristics is in the transition regionbetweenthe reach-throughand the fiat-band voltages,

which in our caseoccursbetween0.75 and 4.0 Volts. This is to be expected because the

model is derived from one-dimensional considerations in this region.

2.3.2. Steady-State Optical Response

It was stated in Section 2.2 that all photons not reflected from the top of the active semicon-

ductor layer are absorbed in the depletion region where they suffer negligible recombination.

Mathematically, the photocurrent generated due to the absorbed photons can be related to

the incident photon thus:

lph o¢ qr]¢(t), (21)

where lph is the generated steady-state photocurrent, ¢(t) is the photon arrival rate and r/

the efficiency of conversion of absorbed photons into electron-hole pairs.

The equation for the steady-state current can be developed from Eqns. (1) and (2). In

this development, we assume no recombination so that at the steady-state when On/Ot =

Op/at = 0, the following equations result:

V . S,_ = -_Gopt + Gth) (22)



and

V . J, = q(Gopt + Gth), (23)

where Gopt and Gth are, respectively, the optical and thermal carrier generation rates. Re-

combination in the depletion layer has been neglected. The currents Jn and Jv can be

separated into the constituent ptiotocurrent and dark current terms as follows:

J- = J%a + Jnd (24)

and

Jp = Jvph + Jpd, (25)

are the photocurrent terms and J-d and Jpn are the dark current termswhere J%h and Jpph

for electrons and holes, respectively. Since these equations are linear, one can extract the

relations relevant for the photocurrent as

(26)V .J_p_ = -qGovt

and

V" Jpph = qGopt.

From Gauss' divergence theorem, one obtains

(27)

and

fan,p J'_ph " dA = -q fvn,p GoptdV (28)

JAn,, Jp,,n " cIa = q Jvn,_, GoptdV, (29)

r

where Adep and Vd_p denote the area and volume, respectively, bounding the depletion region.

These equations can be interpreted in a fairly straightforward manner within the frame-

work of our premise. Since any photons nolt3reflected from the surface of the device are



absorbedin the depletion region, the integral on the right handsidesof the equations simply

represents the carrier generation rate multiplied by the electronic charge q. This is equivalent

to the product of the normal component of the incident optical intensity, the power trans-

missivity coefficient of the active layer, the total area of the device not covered by electrodes,

and the conversion efficiency of photons to electron-hole pairs.

The left-hand side integrals simply represent the photocurrent extracted by each elec-

trode. In this case, the electron photocurrent will be non-zero only at the positive contacts

and the hole photocurrent will be non-zero only at the negative contacts. This leads to the

following set of equations for the photocurrent:

/A_J'Ph'dA =--/A+JnPh "dA = [qrl(l_cR))t] ' < S > '(Aa- Am ), (30)

where A+ and A_ denote the surfaces bounded by the positively and negatively biased

electrodes, respectively. Aa is the total active device area, Am is the metallized area, R

is the reflectivity of the active layer at the wavelength )t and < S > is the time-average

Poynting vector of the normal incident optical radiation. The other parameters have their

usual meanings and for future reference, we shall define ¢o = [r/(1-R)A < S >]/hc. Note that

the electron and hole photocurrents are equal in magnitude. The steady-state photocurrent

is then

2.3.3. Capacitance

Ivh = [ qrl(1- R)'X]hc ]< S > I(Aa- Am). (31)

The effective capacitance of the conventional interdigitated MSM structures can be calculated

using conformal mapping techniques when the depletion capacitance is neglected and two-

dimensional analysis is used for a pair of electrodes. The resulting expression for the effective

capacitance is given byI7 ]
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K(k)

c = N,_o(1+ _r)K'(k')' (32)

where Nt is the total number of gaps in the interdigitated structure, ¢r is the relative dielectric

constant of the material, K(k) and K'(k') both denote the complete elliptic integrals of the

first kind,k = tan2(4a/_b),and k'= vq- k2.

For the concentric electrode structure, however, the analysis is not so simple. Consider,

for example, the Laplace equation for the potential in both Cartesian and cylindrical coor-

dinate systems:

and

_z_ + _-_ + _-_d- ° (33)

02_o 02_ 1 39_

Oz---_ + _ + ---rOr = 0. (34)

In the cylindrical coordinate system, the Laplace equation has the term 0_o/r0r which

breaks the symmetry of the device from one electrode period to another. Conformal mapping

techniques cannot be applied to this equation because a single pair of electrodes cannot be

considered in isolation. In any case, conformal mapping techniques are only useful when

the Laplace equation has the exact form of Eqn. (33) [11]. Closed form expressions for the

capacitance of the concentric electrode detector are not, therefore, as obvious as those for

the conventional device. We have therefore chosen to use a numerical solution of the Laplace

equation in cylindrical coordinates for the potential and the associated field relations to

obtain the capacitance. In this formulation, we use a standard finite-difference rendition

of the Laplace equation, including Dirichlet conditions on the electrodes and the no-flux

conditions on the rest of the boundary. The resulting equations are given below.
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Ar 2 Az 2
-t- ¢pl,j-1 4- _pl,j+l - 2¢pi,j ,_, 0 (35)

if R_ k < r_ < Ro k and k is even; or

if Ri k < ri < Ro k and k is odd. Otherwise

(36)

(37)

_i,_-1 = _o_,j+l (38)

for all other values of ri when j = 0 or N and

_Oi+l,j = _Pi-l,j (39)

when i = 0 or i = g. In the above set of equations, i is the index for the location of a point

on the r axis and is an integer ranging from 0 to g. The index variable j determines the

z coordinate of a given point and ranges from 0 to N. Since this method requires a finite

domain with respect to both coordinates, zg and rt must be chosen to.be large enough to

ensure that the electric fields have decayed well before these boundaries are reached. In this

notation, Vb is the applied bias voltage and k is the index denoting the concentric electrodes,

with k = 0 corresponding to the central disk and k = N_ corresponding to the outermost

annular electrode. Rok denotes the outer radius of the kth electrode and Rik denotes the

inner radius of the same electrode.

This set of linear equations is solved to give the electrostatic potential using a standard

Gauss-Seidel iterative method. The resulting potential solution can then be used to obtain

the capacitance symbolically according to

c = --Q' (40)
16Vb



where

and

Qt = asdA = as(r)drd8 (41)
1

= re(r, 0). = 0); (42)

in this presentation, a8 is the surface charge density on the electrodes, _ is the unit vector

normal to the electrodes, and Qt is the magnitude of the total charge on the positively biased

electrodes. And finally, the working capacitance relation is given as

c= [2 (i+_z -] _](qo,,,0 - qo,,.1)r,,. (43)

where the subscript i' indicates summation over the positive electrodes.

requires a modest amount of computational effort.

than the complete drift-diffusion equations.

This technique

It is still, however, faster to implement

2.3.4. The Intrinsic Frequency Response of MSM Photodetectors

2.3.5. Conventional Interdigitated Electrode Geometry

A simple frequency response function for an MSM detector can be derived if one assumes

that the photogenerated carriers travel at their saturated velocities across the depletion layer.

For this derivation, consider the rectangular pair of electrodes shown in Fig. 6. A thin sheet

of electron-hole pairs is photogenrated at some position x _ between the electrodes. Let the

electron-hole pair photogeneration be caused by a modulated light source described by

¢(t) = ¢0 exp(jwt) (44)

where ¢o is as defined previously and w is the modulation frequency. The time required

for an electron generated at position x' and collected at the positively biased electrode is

r_ = x'/v,,. The corresponding time for a hot_ liberated at the same position and collected



at the negatively biasedelectrode is v_ = (W - x')/Vsh. The parameters vs, and V_h are,

respectively, the electron and the hole saturation velocities.

It can be shown that the current impulse observed in a external circuit resulting from a

single electron generated at the position x _ as shown in Fig. 6 is

5__ qv(t) (45)
W

where q is the electronic charge and v(t) is the instantaneous electron velocity---which in

this case is the saturated velocity, v_. The corresponding current impulse due to a hole is

5zh- qv(t) _ qv,h (46)
W W

From these simple arguments, it follows that the instantaneous photocurrent due to the

electron-hole pairs generated at time t is

qv'_¢° exp(jwt') ' ft_Jph(t) =., W dt + -if,
qVshdPOexp(jwt') dt'.

W
(47)

Note that since a carrier spends a time 7_'(h) in transit, the instantaneous current at some

arbitrary time t is the sum of the current contributions from carriers generated between the

times t and t - V_(h). The instantaneous photocurrent expression in Eqn. (47) evaluates to

Jph = qfoe j_t [1--exp(--jw(x'/v,_)jwr_ + 1 -exp(--jw(W]wrh - x')/Vsh)] (48)

where we have substituted x'/v,, for r_' and (W- x')/Vsh for r_ and defined the electron

(hole) transit time between the 'electrodes as

W
= ---. (49)

re(h) v_(a)

The total photocurrent generated by a single MSM device which consists of a pair of elec-

trodes of length L and separated by a width W is given by the expression

fO0 fo [ -- ' " " _ 1--exp[--Jco(W--xt/Vsh)]']jWTh dxtdYt" (50)
5 w 1 expI-jw(x'/v,,_]+

I,h(t) = q¢oe '_t jwr_ 18



This evaluatesto

[.Iph(t) = q¢oLWe j_t 3wr¢ • .]+ e -3_'° - 1 jwTh + e -:_'h - 1

(j_)_ + _--_)_ . (51)

Using the definition for ¢0 from our previous discussion of the steady-state optical response,

the photocurrent can be rewritten in terms of the incident optical power Pin as

q.(1 R)a]I,h(t) = _c PineJ_tH(w)" (52)

The factor

.

H(w) = jwr, + e -_'° - 1 jwrh + e -:_,h - 1 (53)
(jwr,)2 + (jwrh)2

represents the carrier transit-time limited response of a single MSM device. This is also the

response of any interdigitated electrode MSM device with an arbitrary number of electrode

pairs. We call this response the intrinsic frequency response to distinguish it from the

function which obtains when the device is connected to an external circuit. The 3 dB

bandwidth of conventional MSM devices can be estimated from the [H(w)l function. This

function is plotted in Fig. 7 for a typical device fabricated from GaAs material. The

bandwidth is about 37 GHz.

2.3.6. New Concentric Electrode Geometry

The frequency response of the concentric electrode devices can be derived in a manner anal-

ogous to the interdigitated case. We consider the concentric electrode device shown in Fig.

2. The photocurrent generated within the first annular gap bounded by the positively biased

central disk and the first negatively biased concentric electrode is given by the expression

2,_ n 7 [l _exp[_jw(r_ n+)/vs,]/'h(t)=fo //t t q¢°e:_' jwr_

19

1-exp [-jw(R; -r)/v,h]] rdrdO
+ 1

(54)



whereR + is the outer radius of the positively biased electrode and R_- is the inner radius of

the negatively biased electrode. This expression evaluates to

Ivh(t) = q¢oe j°'tr ([RT] 2 -[R+] 2) Her(w) (55)

where

HcT(_o) = Hit(w) + H2T(w) + HaT(w), (56)

and

(57)

[ 2W_ ,] [ RT e-i_" - R+o R+oe-J'_'_h - RT ]H2_(w) = [[R712 - [R+12J (jwr_)2 + (-_h) g
(58)

and

H3t(w) = LINT]2 - [n+]2j t (Jwz_) 3 (--_hy a .. (59)

Note that in the concentric electrode case, we have made the following definitions, Wc _--

R_- - R + and r_(h) -- Wc/v,_(h).

The expression for the photocurrent for the second annular gap, which is bounded by a

negatively biased electrode in the inner radius and a positively biased electrode on the outer

radius, can be shown to be

Ivh(t ) = q¢0eJ°"r ([n+l 2- [no] 2) Hcl(w ) (60)

where

H_l(w ) = H,i(w ) _foH2l(w) + Hal(w), (61)



and

(62)

H_(_) =
2W_

R+e -j_'_ - n-_ R°e-J_" - R+] (63)

and

2W_ [e -j''_h _ 1 e -j_'_ - 1]
H3_(w)= [n+]2_[ng_] _ t (jw_.h) 3 (_-_ j. (64)

For a multiple (concentric) electrode MSM device the two expressions for the photocurrent

derived above must be generalized to give the total photocurrent over the entire device.

It is a fairly straight-forward, but tedious, exercise in algebra to show that the complete

photocurrent expression for N_ electrodes is

Iph( t ) = q¢oeJ_%r R2 Hc(w). (65)

The function He(w) is defined thus:

go(_) = gl(_) + H_(_) + H3(_), (66)

where

1]HI(_) = + .------
yWrh

(67)

and

2We[p-e -_" - e÷ e+e-j_" - p-]H2(w) = --_ t (jw,_)2 + _ f ,

e -.i'_'h - 1

(68)

(69)



We havealso madethe following additional variabledefinitions:

M M'

k=O k=O

(70)

M M'

_+ _ R+2k + _] + (71)= Ri(2_+21,
k=0 k=0

Ne-1

R 2 ,R2 [[ IRon] (72)
k=O

where M = (N, - 1)/2 for N_ odd or M = N,/2 for N, even and M' = M for even N, or

M' = M- 1 for N, odd.

In the derivation of the expressions above, we have assumed that the central disk of the

device is positively biased. Subsequent electrodes, therefore, take on alternating negative

and positive polarities. If the central disk had been biased negatively, then the photocurrent

expressions would have been slightly different; the differences being attributed to the sign of

the carriers and the new direction in which they are now being transported. The fundamental

physics of the device, however, remains the same, and in fact, the device Bode plot is exactly

identical to that shown in Fig. 7 for a device whose central disk is positively biased.

o Comparison of Important Performance Character-

istics

The theoretical framework discussed in this paper can be used to compare some of the key

operating characteristics of MSM photodetectors in both the conventional interdigitated and

the new concentric electrode geometry. The methods developed within the framework can

also be used to identify guidelines for optimal feature size dimensions and configuration.
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There are severalwaysto specifydevicefeature sizes:one way is to specify the ratio of

the total metalized device area to the total device area. We call this ratio the fill ratio. For

the conventional interdigitated electrode devices, we must specify the electrode width, a,

and the inter-electrode spacing, b, in addition to the number of desired electrode pairs. For

the concentric electrode devices, one must also specify the radius of the central disk, Re.

For purely illustrative purposes, we have chosen to compare MSM devices from both

geometries with nominally the same active areas. The results discussed here are based on a

concentric electrode device with a device radius of 25 #m. The dimensions of the conventional

interdigitated device are then chosen to corresond to an area of the same size as that of the

concentric device. The parameter of most interest when designing MSM photodectors is

usually the ezternal frequency response. This response is the compounded response of the

device as computed from carrier transit time limitations and the response controlled by the

overall capacitive and inductive effects of the device geometry. The capacitive and inductive

effects are very difiicult to quantify since they usually depend on the details of the fabrication

process in addition to the measurement techniques employed.

3.1. Intrinsic Frequency Response Characteristics

A theoretical comparison of the intrinsic frequency response for the two device geometries

for identical nominal active areas and feature sizes, yields no significant differences. The

frequency responses are calculated using the relations derived in subsections 2.3.5 and 2.3.6.

The fact that there is no difference in the intrinsic frequency responses for the two geome-

tries is not surprising at all. This is simply because the intrinsic behavior depends on the

fundamental physics of the device material and not on the geometrical structure. And in

fact, this lends support to the theoretical soundness of the two methods used in computing

the intrinsic frequency response.
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We have also calculated the 3 dB bandwidth of the devices discussed here as a function of

the active area gap-width between the electrodes. This information is displayed graphically

in Fig. 8. This curve is valid for the intrinsic 3 dB bandwidth for both the interdigitated

and concentric electrode devices. The natural trend of increasing bandwidth with decreasing

gap-width is clearly evident here. The bandwidths predicted from this graph are in reason-

able agreement with the general trends in the literature [8, 9, 10]. The comparison with

experimental values should not be pushed too far because the measured values are gener-

ally for the eztrinsic frequency bandwidth which is limited by some the factors mentioned

previously.

3.2. Dominant Device Capacitance

The capacitance of the MSM devices is one of the parameters which depends on the par-

ticular geometry chosen. We show in Fig. 9 the calculated capacitance values for the two

device geometries discussed above for varying values of the fill ratio. The techniques used to

compute the capacitance values have already been discussed in subsection 2.3.3. In general,

the effective capacitance increases as more and more of the active device area is covered with

the electrode metallization. This is true for both device geometries. Observe, however, that

the capacitance value for a given fill ratio is lower for a concentric electrode MSM device

than for an interdigitated device. This can be easily understood by considering the equipo-

tential plot shown in Fig. 10. This plot, typical for the devices in the concentric electrode

geometry, has one distinguishing feature, that is: the equipotential contours are spaced fur-

ther apart compared to those for an interdigitated electrode device. Note, for instance, the

equipotentials at the central disk. These equipotentials correspond to lower electric field

strengths at the electrodes; which in turn, implies a lower charge density, specially at the

central disk. In the intergiditated electrode device, the charge is uniformly distributed from
24



one electrode pair to another. The anomaly in the geometry dependence of the capacitance

for the concentric electrode device provides one with a unique option. One can deliberately

minimize the device capacitance by optimally choosing the size of the central disk. This is

a very significant development since in practical MSM devices, the measured frequency re-

sponse always depends on the interaction of the effective device capacitance and any external

resistive loads.

4. Summary

We have proposed a new geometry for MSM photodetectors and established a framework

for the analysis of the performance limits for both the new and the conventional geometry.

Although the methods of analysis developed here are fairly elementary, the results they yield

agree quite well with those computed using the fully-coupled drift-diffusion equations.

A theoretical comparison of the important device characteristics shows that the concentric

electrode device has some important inherent advantages. These advantages ought to make

the new device more attractive in practical implementation of the MSM concept.

Finally, we point out that MSM photodetectors suffer from another problem which also

limits their performance. This problem is inductance. It is most commonly paid short shrift

in the literature. We believe we have a technique which will allow us to almost eliminate

this problem in the device geometry proposed here. The methods of analysis of the virtually

inductance-free device will be reported elsewhere.

25



5. Acknowledgment

This work was supported by NSF through a National Science Foundation Young Investigator

Award to E. Towe and by NASA Langley Research Center.

26



References

[1] Y. Liu, W. Khalil, P.B. Fischer, S.Y. Chou, T.Y. Hsiang, S. Alexandrou, and R.

Sobolewski, "Nanoscale Ultrafast Metal- Semiconductor-Metal Photodetectors", pre-

sented at the 50th IEEE Device Research Conference, MIT, Cambridge, MA, June

22-24,1992.

[2] S.Y. Chou, Y. Liu, and P.B. Fischer, "Tara-hertz GaAs metal-semiconductor-metal

photodetectors with 25 nm finger spacing and finger width", Appl. Phys. Lett., vol. 61,

pp. 477-479, 1992.

[3] J.B.D. Soole and H. Schumacher, "Transit-Time Limited Frequency Response of InGaAs

MSM Photodetectors", IEEE Trans. Electron Devices., vol. ED-37, no. 11, pp. 2285-

2291, 1990.

[4] M. Shur, Physics of Semiconductor Devices, Englewood-Cliffs, New Jersey: Prentice

Hall, 1990, chapter 2.

[5] B.J. Van Zeghbroeck, W. Patrick, J-M. Halbout, and P. Vettiger, "105-GHz Bandwidth

Metal-Semiconductor-Metal Photodiode", IEEE Electorn Device Lett., vol. EDL-9, no.

10, pp. 527-529, 1988.

[6] S.M. Sze, D.J. Coleman, Jr., and A. Loya, "Current Transport in Metal-Semiconductor-

Metal (MSM) Structures", Solid State Electronics, vol. 14, no. 12-C, pp. 1209-1218,

1971.

[7] Y.C. Lim and R.A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips

by Conformal Mappings", IEEE Trans. Electron Devices, vol. ED-15, no. 3, pp. 173-180,

1968.

27



[8] O. Wada, H. Nobuhara, H. Hamaguchi, T. Mikawa, A. Tackeuchi, and T. Fuji,

"Very high speedGaInAs metal- semiconductor-metalphotodiodeincorporating an AII-

nAs/GaInAs gradedsuperlattice", Appl. Phys. Left., vol. 54, no. 1 pp. 16-17, 1988.

[9] J.F. Vinchant, J.P. Vilcot, J.L. Lorriaux, and D. Decoster, "Monolithic Integration

of a thin and short Metal-Semiconductor-Metal Photodetector with a GaA1As Optical

Inverted Rib Waveguide on a GaAs Semi-Insulating Substrate", Appl. Phys. Lett., vol.

55, no. 19, pp. 1966-1968, 1989.

[10] A. N. M. M. Chodhury, C. Jagannath, A. Negri, B. Elman, and C.A. Armineto, "Ther-

mally Stable, Superlattice-Enhanced 1.3 /_m InGaAs MSM Photodetectors on GaAs

Substrates", IEEE Electron Device Left., vol. EDL-12, no. 6, pp. 281-283, 1991.

[11] E.B. Salt and A.D. Snider, Fundamentals of Complex Analysis for Mathematics, Engi-

neering, and Science. Englewood-Cliffs, New Jersey: Prentice Hall, 1976, chapter 7.

28



Figure Caption

Fig. 1. Conventional interdigitated electrode MSM photodetector

geometry.

Fig. 2. Concentric electrode MSM photodetector geometry.

Fig. 3. Cross section of the concentric electrode MSM photodetector

structure.

Fig. 4. Dark current vectors in an MSM photodetector.

Fig. 5. Comparison between simplified dark current model and numeric solution of drift-

diffusion equations.

Fig. 6 Geometry used in derivation of MSM frequency response.

Fig. 7 Calculated frequency response of typical GaAs MSM photodetector (1.4 /tm gap

width).

Fig. 8 Plot of calculated MSM photodetector bandwidth as a function of gap width.

Fig. 9 Capacitance comparison between interdigitated and concentric

electrode MSM structures.

Fig. 10 Equipotential contour plots for the concentric MSM device

structure.
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